<table>
<thead>
<tr>
<th>Score</th>
<th>1= 0-1 out of 5 bullets</th>
<th>2= 2-3 out of 5 bullets</th>
<th>3= 4-5 out of 5 bullets</th>
<th>E</th>
</tr>
</thead>
</table>
| **Trimester-1** | Student is unable or rarely able to demonstrate understanding of key concepts.
- Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.
- Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.
- **Read maps to identify and compare Earth’s surface features.**
- **Identify patterns in Earth’s surface features.** | Student is beginning to demonstrate understanding of key concepts.
- Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.
- Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.
- **Read maps to identify and compare Earth’s surface features.**
- **Identify patterns in Earth’s surface features.**
- Student is beginning to communicate or sometimes communicates using acquired vocabulary. | Student demonstrates understanding of key concepts by using them effectively throughout the units taught.
- Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.
- Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.
- **Read maps to identify and compare Earth’s surface features.**
- **Identify patterns in Earth’s surface features.**
- Student communicates using acquired vocabulary. | Student independently meets standards and extends understanding through application to real-life situations. Example:
Student can construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. |
- Student is unable or rarely able to communicate using acquired vocabulary.

Assessment: worktext responses, projects, experiments, and investigations
Examples: water stream investigation, mudslide investigation, trail design, model of plate tectonics, volcano demonstration, tsunami investigation

<table>
<thead>
<tr>
<th>Score</th>
<th>1= 0-1 out of 5 bullets</th>
<th>2= 2-3 out of 5 bullets</th>
<th>3= 4-5 out of 5 bullets</th>
<th>E</th>
</tr>
</thead>
</table>
| **Trimester-All** | Student is unable or rarely able to plan and carry out investigations.
- Identify the purpose of the investigation or the question to be answered through building of model.
- Use materials and tools correctly.
- Plan procedures and carry them out accurately.
- Use time well and stay focused.
- Label models and diagrams.
- Include an explanation of the | Student is beginning to plan and carry out investigations.
- Identify the purpose of the investigation or the question to be answered through building of model.
- Use materials and tools correctly.
- Plan procedures and carry them out accurately.
- Use time well and stay focused.
- Label models and diagrams.
- Include an explanation of the scientific concept modeled | Student consistently plans and carries out investigations.
- Identify the purpose of the investigation or the question to be answered through building of model.
- Use materials and tools correctly.
- Plan procedures and carry them out accurately.
- Use time well and stay focused.
- Label models and diagrams.
- Include an explanation of the scientific concept modeled | Not applicable. |
<table>
<thead>
<tr>
<th>Score</th>
<th>1=0-3 out of 9 bullets</th>
<th>2=4-6 out of 9 bullets</th>
<th>3=7-9 out of 9 bullets</th>
<th>E</th>
</tr>
</thead>
</table>
| **Trimester-All** | Student is unable or rarely able to express scientific ideas effectively using writing, discussion, and/or drawing.
- Write data that are scientifically appropriate to support the claim.
- Write claim that is a reasonable answer to the question and is based on general knowledge.
- Write data that is sufficient and convincing.
- Use scientific terms. | Student is beginning to express scientific ideas effectively using writing, discussion, and/or drawing.
- Write data that are scientifically appropriate to support the claim.
- Write claim that is a reasonable answer to the question and is based on general knowledge.
- Write data that is sufficient and convincing.
- Use scientific terms.
- Include charts/diagrams/or models.
- Include evidence that is qualitative, using senses, or | Student consistently expresses scientific ideas effectively using writing, discussion, and/or drawing.
- Write data that are scientifically appropriate to support the claim.
- Write claim that is a reasonable answer to the question and is based on general knowledge.
- Write data that is sufficient and convincing.
- Use scientific terms.
- Include charts/diagrams/or models.
- Include evidence that is qualitative, using senses, or | Student independently meets standards and extends understanding. Example:
- Write a claim that is a reasonable answer to the question and is based on general knowledge and describe the relationship between dependent and independent variables. |
- Include charts/diagrams/models.
- Include evidence that is qualitative, using senses, or quantitative, using numbers.
- Include multiple pieces of evidence.
- Write response that adequately expresses ideas and include scientifically appropriate descriptions and vocabulary that is focused mainly on question at hand with a logical progression of ideas.
- Provide the justification for why this evidence is important to this claim.

<table>
<thead>
<tr>
<th>quantitative, using numbers.</th>
<th>Include multiple pieces of evidence.</th>
<th>or quantitative, using numbers.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write response that adequately expresses ideas and include scientifically appropriate descriptions and vocabulary that is focused mainly on question at hand with a logical progression of ideas.</td>
<td>Include multiple pieces of evidence.</td>
</tr>
<tr>
<td></td>
<td>Provide the justification for why this evidence is important to this claim.</td>
<td>Write response that adequately expresses ideas and include scientifically appropriate descriptions and vocabulary that is focused mainly on question at hand with a logical progression of ideas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provide the justification for why this evidence is important to this claim.</td>
</tr>
</tbody>
</table>

Assessment: work text responses, projects, experiments, and investigations

Demonstrates Understanding of unit Concepts- (4-ESS2-2), (4-ESS3-2), (4-ESS3-1), (4-PS3-2), (4-PS3-1), (4-PS3-3), (4-PS3-4)

Science Unit 2 – Plate Tectonics and Natural Hazards 9 weeks (finishing from the first trimester)
Science Unit 3 – Conservation of Energy 5 weeks
Science Unit 4- Forces and motions 6 weeks (Introduction)
<table>
<thead>
<tr>
<th>Score</th>
<th>1 = 0-3 out of 11 bullets</th>
<th>2 = 4-7 out of 11 bullets</th>
<th>3 = 8-11 out of 11 bullets</th>
<th>E</th>
</tr>
</thead>
</table>
| Trimester-2 | Student is unable or rarely able to demonstrate
- Read maps to identify and compare Earth’s surface features.
- Identify patterns in Earth’s surface features.
- Create a model of a topographic map.
- Explain how tectonic movement and weather related natural hazards can negatively affect humans and explain how these dangers can be minimized.
- Use models, conduct investigations, and design solutions to reduce the harmful impacts caused by them.
- Make observations to provide evidence that energy can be transferred from place to place by sounds, light, heat, and electric currents. | Student is beginning to demonstrate understanding of key concepts.
- Read maps to identify and compare Earth’s surface features.
- Identify patterns in Earth’s surface features.
- Create a model of a topographic map.
- Explain how tectonic movement and weather related natural hazards can negatively affect humans and explain how these dangers can be minimized.
- Use models, conduct investigations, and design solutions to reduce the harmful impacts caused by them.
- Make observations to provide evidence that energy can be transferred from place to place by sounds, light, heat, and electric currents.
- Obtain and combine information to describe that energy and fuel are derived from natural resources and their uses affect the environment. | Student demonstrates understanding of key concepts by using them effectively throughout the units taught.
- Read maps to identify and compare Earth’s surface features.
- Identify patterns in Earth’s surface features.
- Create a model of a topographic map.
- Explain how tectonic movement and weather related natural hazards can negatively affect humans and explain how these dangers can be minimized.
- Use models, conduct investigations, and design solutions to reduce the harmful impacts caused by them.
- Make observations to provide evidence that energy can be transferred from place to place by sounds, light, heat, and electric currents.
- Obtain and combine information to describe that energy and fuel are derived from
- Obtain and combine information to describe that energy and fuel are derived from | Student independently meets standards and extends understanding through application to real-life situations. Example:
Student can describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. |
<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>place by sounds, light, heat, and electric currents.</td>
<td>Obtain and combine information to describe that energy and fuel are derived from natural resources and their uses affect the environment.</td>
<td>Use evidence to construct an explanation relating the speed of an object to the energy of the object.</td>
</tr>
<tr>
<td>Obtain and combine information to describe that energy and fuel are derived from natural resources and their uses affect the environment.</td>
<td>Ask questions and predict outcomes about the changes in energy that occur when objects collide.</td>
<td>Ask questions and predict outcomes about the changes in energy that occur when objects collide.</td>
</tr>
<tr>
<td>Use evidence to construct an explanation relating the speed of an object to the energy of the object.</td>
<td>Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.</td>
<td>Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.</td>
</tr>
<tr>
<td>Ask questions and predict outcomes about the changes in energy that occur when objects collide.</td>
<td>Student is beginning to communicate or sometimes communicates using acquired vocabulary.</td>
<td>Student communicates using acquired vocabulary.</td>
</tr>
<tr>
<td>Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.</td>
<td>Student is unable or rarely able to communicate using acquired vocabulary.</td>
<td></td>
</tr>
</tbody>
</table>
Assessment: worktext responses, projects, experiments, and investigations Examples: earthquake investigation, topography map construction, electrical investigations in circuits, wind turbine construction and design, race car track model

<table>
<thead>
<tr>
<th>Score</th>
<th>1= 0-2 out of 6 bullets</th>
<th>2= 3-4 out of 6 bullets</th>
<th>3= 5-6 out of 6 bullets</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Student is unable or rarely able to demonstrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimester-3</td>
<td>** Use evidence to construct an explanation relating the speed of an object to the energy of the object.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>** Ask questions and predict outcomes about the changes in energy that occur when objects collide.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>** Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop a model of waves to describe patterns in terms of amplitude and wavelength and show that waves can cause objects to move.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Student is beginning to demonstrate understanding of key concepts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>** Use evidence to construct an explanation relating the speed of an object to the energy of the object.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>** Ask questions and predict outcomes about the changes in energy that occur when objects collide.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>** Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop a model of waves to describe patterns in terms of amplitude and wavelength and show that waves can cause objects to move.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Student demonstrates understanding of key concepts by using them effectively throughout the units taught.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>** Use evidence to construct an explanation relating the speed of an object to the energy of the object.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>** Ask questions and predict outcomes about the changes in energy that occur when objects collide.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>** Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop a model of waves to describe patterns in terms of amplitude and wavelength and show that waves can cause objects to move.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Student independently meets standards and extends understanding through application to real-life situations. Example:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Student can explain gravitational force.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
that waves can cause objects to move.
- Generate and compare multiple solutions that use patterns to transfer information.
- Student is unable or rarely able to communicate using acquired vocabulary.

- Generate and compare multiple solutions that use patterns to transfer information.
- Student is beginning to communicate or sometimes communicates using acquired vocabulary.

that waves can cause objects to move.
- Generate and compare multiple solutions that use patterns to transfer information.
- Student communicates using acquired vocabulary.

Assessment: worktext responses, projects, experiments, and investigations Examples: wave experiments with water slinky experiment, code investigation